Индикатор ADX описание

Рейтинг лучших брокеров бинарных опционов 2020:

Индикатор ADX: описание

Перспективы и использование.
Для налаживания передатчика вместо жесткой антенны можно использовать гибкий, многожильный. При этом можно либо просто припаивать его к измеряемым точкам схемы, либо если другим проводом массу индикатора (точку соединения VD1, С2, VD3) соединить с массой налаживаемой ВЧ системы просто подносить этот гибкий антенный провод к тестовой точке или контуру (не припаивая). Если на контуре нет экрана – иногда бывает достаточно просто поднести антенный провод индикатора к катушке контура. В данном случае все зависит от интенсивности ВЧ напряжения в измеряемой системе.
Вместо амперметра или вольтметра можно попробовать подключить наушники – тогда можно будет услышать сигнал передатчика, так например, рекомендуется делать в книге Борисова «Юный радиолюбитель».
Этот же пробник (если подключен вольтметр), зная частоту на которой работает ВЧ система может помочь довольно точно измерить мощность сигнала. При этом надо снять показания прибора на минимально возможном расстоянии от антенны, затем чуть дальше (измерив это расстояние линейкой), затем подставив в формулу (ее надо поискать в справочниках — на память я не помню) получить значение в dB. Естественно, то желательно данную операцию провести, например, с радиостанцией мощность которой известна, и только потом измерять мощность неизвестно источника. Конечно надо учитывать, что частоты эталонной радиостанции и вашего источника одни и те же, т.к. хоть в нашем случае в описанном пробнике нет входного контура он все же обладает частотоизбирающими свойствами за счет конструкции (длина антенны, емкости монтажа и т.д.)

Индикатор ADX: описание

Индикаторы ВЧ излучений.

Для обнаружения источников ВЧ излучений, которыми могут быть радиопередатчики, гетеродины приемников и даже персональный компьютер можно воспользоваться устройством, схема которого приведена на рисунке.

Оно представляет собой простейший детектор радиоволн со звуковой индикацией. Настраивать прибор при поиске работающих передатчиков можно путем изменения длины телескопической приемной антенны.

Телескопическая приемная антенна воспринимает высокочастотные электромагнитные колебания в диапазоне до 500 МГц, которые затем детектируются диодом VD1 типа Д9Б. Высокочастотная составляющая сигнала отфильтровывается дросселем L1 и конденсатором С1. Низкочастотный сигнал поступает через резистор R1 на базу транзистора VT1 типа КТ315, что приводит к открыванию последнего и, как следствие, к открыванию транзистора VT2 типа КТ361. При этом на резисторе R4 появляется положительное напряжение, близкое к напряжению питания, которое воспринимается логическим элементом DD1.1 микросхемы DD1 типа К561ЛА7 как уровень логической единицы. При этом включается генератор импульсов на элементах DD1.1, DD1.2, R5 и СЗ С его выхода импульсы с частотой 2 кГц поступают на вход буферного каскада на элементах DD1.3, DD1.4. Нагрузкой этого каскада служит звуковой пьезокерамический преобразователь ZQ1 типа ЗП-1, который преобразует электрические колебания частотой 2 кГц в акустические. С целью увеличения громкости звучания преобразователь ZQ1 включен между входом и выходом элемента DD1.4 микросхемы DD1. Питается детектор от источника тока напряжением 9 В через параметрический стабилизатор на элементах VD2, R6.

В детекторе используются резисторы типа МЛТ-0,125. Диод VD1 можно заменить на ГД507 или любой германиевый высокочастотный. Транзисторы VT1 и VT2 могут быть заменены на КТ3102 и КТ3107 соответственно. Стабилитрон VD2 может быть любым с напряжением стабилизации 4,7-7,0 В Пьезокерамический преобразователь ZQ1 можно заменить на ЗП-22.

Настраивать детектор лучше всего с использованием высокочастотного генератора, подключив к выходу генератора изолированный провод — антенну, и параллельно ему расположив антенну детектора. Исследуя весь радиодиапазон, начиная с частоты 500 кГц и до точки, где детектор перестанет воспринимать радиоволны можно обнаружить то, что с изменением частоты, чувствительность детектора изменяется.

Устройство схема которого приведена на рисунке отличается от предыдущего более высокой чувствительностью и возможностью ее регулировки.

Сигнал, принимаемый антенной, усиливается широкополосным трехкаскадным апериодическим усилителем высокой частоты на транзисторах VT1-VT3 типа КТЗ101. Усиленный сигнал с нагрузки транзистора VT3, резистора R10, через конденсатор С9 поступает на детектор, собранный по схеме удвоения напряжения на диодах VD1, VD2. Положительное напряжение с регулятора чувствительности резистора R11 поступает на диоды VD1 и VD2 типа Д9Б. Протекание небольшого начального тока через эти диоды приводит к увеличению чувствительности детектора. Одновременно это напряжение поступает на базу транзистора VT4 типа КТ315 через диод VD3 типа Д9Б и резистор R14. Базовый ток приводит к открыванию транзистора VT4. На его коллекторе устанавливается потенциал логической единицы. При увеличении уровня сигнала на входе устройства постоянное напряжение на конденсаторе С10 уменьшается. Это ведет к закрыванию транзистора VT4. Уровень логической единицы, появляющийся на коллекторе транзистора VT4, разрешает работу генератора прямоугольных импульсов на элементах DD1.1, DD1.2, R17 и С11. Положительные импульсы частотой около 2 Гц разрешают работу генератора прямоугольных импульсов на элементах DD1.3, DD1.4, R18 и С12. С выхода этого генератора прямоугольные импульсы с частотой следования 1,5-2 кГц, промодулированные частотой 2 Гц, поступают на пьезокерамический преобразователь ZQ1 типа ЗП-1. Питание устройства осуществляется от параметрического стабилизатора на стабилитроне VD4 типа КС156 и резисторе R16.

В устройстве использованы резисторы типа МЛТ-0,125. Транзисторы VT1-VT3 можно заменить на КТ3120, КТ3124 или КТ368. В последнем случае уменьшается диапазон регистрируемых сигналов. Диоды VD1-VD3 могут быть любые германиевые высокочастотные. Стабилитрон VD4 может быть любым с напряжением стабилизации 5,6-7,0 В.

Брокеры с русским языком:

Настройку детектора производят по вышеприведенной методике. Верхний предел частоты регистрируемых сигналов у этого детектора может достигать 900-1000 МГц. Регулировка прибора заключается в установлении такого уровня чувствительности детектора резистором R11, при котором компенсируется фоновый уровень радиоизлучения в данном помещении. При этом звуковой сигнализатор не должен работать. При приближении детектора к источнику излучения (микропередатчику) уровень напряженности поля начинает превышать фоновый и звуковая сигнализация срабатывает.

Устройство схема которого приведена на рисунке отличается от описанных выше конструкций малыми габаритами, малым количеством используемых деталей и, вместе с тем, достаточно высокой чувствительностью. В этом детекторе поля использовано новое схемное решение. Хорошо известно, что измерение ВЧ напряжений, меньших 0,5 В, затруднено тем, что уже при переменном напряжении менее 0,2-0,3 В все полупроводниковые диоды становятся неэффективными. Существует, однако, способ измерения малых переменных напряжений с использованием сбалансированного диодно-резистивного моста, позволяющий измерять напряжение менее 20 мВ при равномерной АХЧ до 900 МГц. Принципиальная схема устройства, использующего данный способ, приведена на рис. 3.3. Основу данного устройства составляет микросхема DA1 типа КР1112ПП2. Эта микросхема включает в себя устройство определения баланса электрического моста с индикацией. Микросхема имеет встроенный источник опорного напряжения.

Эта статья научит вас зарабатывать:  Бинарные опционы и секреты торговли бинарными опционами

Сигнал, наводимый в антенне, усиливается широкополосным апериодическим усилителем высокой частоты на транзисторе VT1 типа КТЗ101. Усиленное переменное напряжение высокой частоты через конденсатор СЗ поступает в диодно-резистивный мост на диодах VD1-VD4 типа ГД507 и резисторах R3-R5. От источника опорного напряжения (вывод 3 микросхемы DA1) через резисторы R3-R5 и диоды VD1-VD4 протекает небольшой (примерно несколько микроампер) прямой ток, который улучшает условия детектирования и увеличивает чувствительность детектора. В выпрямлении измеряемого переменного напряжения участвуют только диоды VD1 и VD2, а два других — VD3, VD4 — образуют соседнее плечо моста, на котором создается начальное напряжение, балансирующее мост, и одновременно служат для его термокомпенсации. Все диоды подобраны с возможно более близкими вольт-амперными характеристиками. Конденсатор С4 отфильтровывает переменную составляющую выпрямленного напряжения. Резистор R4 служит для точной балансировки моста. При хорошей балансировке устройство будет реагировать только на напряжение, являющееся результатом выпрямления измеряемого сигнала. Выпрямленное напряжение и напряжение, балансирующее мост, через резисторы R7 и R8 поступают на входы усилителя постоянного тока, расположенного в микросхеме DA1. В зависимости от состояния баланса моста сигнал индикации поступает на один из светодиодов VD5 или VD6 — типа АЛ307. Таким образом, при балансе моста (отсутствие сигнала) включен светодиод VD5, а при наличии сигнала (нарушение баланса моста) — светодиод VD6. В качестве диодов VD1-VD4 можно использовать любые высокочастотные диоды. Светодиоды могут быть любого типа. В качестве источника питания используется источник постоянного тока напряжением 2,5-5 В.

Статья ‘Обзор усилителей RM Italy’

Обзор усилителей RM Italy

Усилители RM Italy – умощнение бюджетными средствами и не очень.

Каждый радиолюбитель рано или поздно задумывается над приобретением усилителя мощности. Это и обладатели маломощных трансиверов, и пользователи классических 100-ваттных аппаратов. У пользователей маломощных трансиверов стоит задача сделать так, что бы их слышали не только радиолюбители с хорошими антеннами, но и все остальные. У пользователей классики задача несколько иная. Дополнительно разгрузить и обезопасить выходной каскад используемого трансивера. Второй задачей для обеих групп пользователей стоит усилиться до такой степени, что бы их услышала дальняя станция или обеспечить комфортную беседу на круглом столе при работе по месту.

В этой статье мы рассмотрим усилители КВ диапазона Итальянской фирмы RM, проведём полный анализ схемотехники и технических характеристик рассматриваемых усилителей. В первой части мы рассмотрим наиболее бюджетные модели усилителей. Во второй части будут рассмотрены более дорогие усилители, но более полноценные. В третьей части рассмотрим две модели базового исполнения с питанием от сети переменного тока 220В.

Введение

Фирма RM основана в 1974 году Remo Marchioni в местечке Porretta Terme на севере Италии. От первых букв имени и фамилии человека, основавшего фирму, собственно и пошло название. Основное направление производство фирмы – изготовление качественного вспомогательного радиолюбительского оборудования по минимально возможным ценам. Фирма RM производит не только усилители, но и блоки питания, стабилизаторы напряжения, инверторы, системы защиты от перенапряжения и от короткого замыкания, ВЧ-фильтры. Большую часть своего дохода фирма инвестирует в исследования и новые разработки. Поэтому их изделия всегда актуальны, высокотехнологичны и имеют высокое качество изготовления. В нашей стране фирма RM наиболее известна по своим ВЧ усилителям мощности, которые имеют очень хороший параметр по соотношению цена/качество/мощность. Благодаря этому усилители фирмы RM по праву завоевали большую популярность у пользователей.

Короткий экскурс в теорию

Прежде чем мы начнём обзор – устроим маленький экскурс в теорию работы усилителя и правила измерения их параметров. Делаем это, для того что бы стало понятно – откуда берутся некоторые цифры при измерении характеристик и избежать спорных моментов. Главным спорным моментом являются разные цифры выходной мощности усилителей для разных режимов работы. Вот главные определения:

  • Максимальная мощность
  • Мощность на пике огибающей
  • Эффективная мощность

В ценниках на усилители обычно указывают самую большую мощность, которая описывается как «мощность в режиме SSB» или в иностранной литературе обозначают как «PEP». Догадайтесь для чего это сделано сами. Выражается она значением мощности на пике огибающей. У многих радиолюбителей сразу возникает вопрос. «Как мощность в режиме SSB может быть выше постоянной максимальной мощности?» Это связано со спецификой измерения и определениями.

Если мы подключим трансивер к нагрузке 50 Ом и померяем осциллографом напряжение при подаче несущей, то увидим синусоиду частотой F.

При измерениях принято оперировать следующими терминами:

  • Максимальное или пиковое напряжение Uпик
  • Действующее напряжение Uд
  • Напряжение от пика до пика Uп-п

Когда мы меряем напряжение стрелочным или цифровым прибором, то он нам показывает всегда действующее значение напряжения или тока, которое всегда в 0.7 раз меньше максимального или пикового значения. Ещё его называют среднеквадратичным значением напряжения. Почему считается всегда именно действующее значение, а не пиковое? А потому, что под действующим значением переменного тока (или напряжения) мы понимаем такой постоянный ток, который за то же самое время совершает ту же работу (или выделяет такое же количество тепла), что и данный переменный ток. Соответственно, мощность, которую покажет прибор или мы высчитываем при измерении напряжения на нагрузке 50 Ом в режиме несущей — это и будет наша настоящая реальная мощность, которую способен развить трансивер или усилитель в режиме несущей. Дальше вступает в действие игра понятий. Значение мощности в режиме огибающей обычными приборами померить нельзя, но можно рассчитать. Для измерения пиковых значений мощностей или напряжений использую осциллограф или специальные измерители пиковых значений.

Дальше получается еще интереснее. Если мы даём серию точек и серию тире в режиме CW, то значения средней измеренной мощности за единицу времени получается разное. Средняя мощность при передаче серии точек получается ниже, чем при передаче серии тире. Это связано с тем, что за одно и то же время, энергии при передаче в точках передалось меньше чем в тире. А если мы говорим перед микрофоном обычной громкостью, то средняя мощность на выходе трансивера получается в 4-5 раз меньше, чем мощность в режиме несущей. Это связанно с тем, что в разговорной речи спектр самых громких звуков и самых тихих очень неравномерен и сильно индивидуален у каждого оператора. Для поднятия значения средней мощности применяют компрессоры динамического диапазона или усилители-ограничители. Поэтому, когда в описании будет указана выходная мощность – то это будет эффективная мощность в режиме несущей. А если указано значение мощности «в режиме SSB» или «PEP», то это значит, что указана рассчитанная мощность на пике огибающей. Измерения производились в 2х режимах мощности 5Вт. Сделано это для того что бы можно было оценить выходную мощность совместно с QRP-трансивером типа Yaesu FT-817, Flex-1500 или другими самодельными аппаратами.

Эта статья научит вас зарабатывать:  Бинарные опционы 50 на 50

Часть 1. Максимум мощности за минимум денег

Наиболее дешевые усилители для КВ диапазона представлены моделями усилителей:

  • RM KL-203
  • RM KL-203P
  • RM KL-300
  • RM KL-300P
  • RM KL- 500
  • RM KL- 500-24
  • RM KL-501

Модели усилителей, которые заканчиваются буквой P имеют встроенный предварительный усилитель по приёму. Модель усилителя KL-500-24 отличается от остальных моделей тем, что может питаться, от источника напряжением 24 Вольта и специально предназначена для установки в большом грузовом автомобиле. Все усилители данной линейки имеют самую простую схемотехнику исполнения, что и обусловило их низкую стоимость. Каждый усилитель постоянно улучшается по характеристикам, что отражено уже в нескольких ревизиях производимых печатных плат.

Вид усилителя изнутри

Краткие характеристики и особенности:

  • Напряжение питания — 12-14 Вольт
  • Потребляемый ток — 5-12 Ампер
  • Входная мощность — 1-10 Ватт
  • Выходная мощность — 10-100 Ватт
  • Предварительный усилитель по приёму (для версии Р)

2 модели самых простых и самых дешёвых усилителей. Вторая модель имеет на борту предварительный усилитель по приёму. Это удобная функция, когда усилитель используется в мобильном варианте и работа ведётся на короткую автомобильную антенну.

Схема предварительного усилителя по приёму

Схема предварительного усилителя проста. Применён каскад по схеме с общим эмиттером и электронным управлением. Присутствуют цепи защиты от перегрузки. Усиление такого каскада составляет ориентировочно 6-9дБ.Эта схема предварительного усиления применена во всей линейке усилителей KL-XXXP. По факту обмера характеристик усилителей удалось выяснить, что коэффициент усиления этого каскада выше, и составляет все 15 дБ. Для проверки был использован стенд на основе трансивера Flex-1500 и радиотестера Hewlett-Packard 8935 в качестве генератора сигналов калиброванного уровня. Такие же цифры показали все остальные усилители.
Вот такие скриншоты, подтверждающие работу усилителя мы можем видеть.

Подан сигнал с генератора уровнем -90дБм. Предварительный усилитель в положении OFF (1дБ потерялся на нескольких переходниках и длинном кабеле).

Подан сигнал с генератора уровнем -90дБм. Предварительный усилитель в положении ON.
Итого, чистые 15дБ усиления. А теперь, если пересчитать по шкале S-метра – это 2,5 балла прибавки сигнала или на слух разница между «ничего не слышно» и «разборчиво слышно».
Оба усилителя имеют одну схемотехнику. Это двухтактный широкополосный усилитель на полевых транзисторах. В английском варианте такие усилители называют усилителями типа «push-pull».

Основа схемы усилителя мощности

Усилитель KL-203/203P выполнен по максимально упрощенной схеме. Имеет минимально необходимые цепи защиты по входу. В схеме применены транзисторы с высоким усилением, что позволяет получить достаточно большую выходную мощность, имея при этом весьма простую схемотехнику. Лет 5 назад фирма RM применяла в этих усилителях транзисторы MS1307, широко распространённые в с Си-Би усилителях на 27МГц. На самом деле, это, вероятнее всего, транзисторы 2SC1307 фирмы NEC. Описания на MS1307 в интернете найти не удалось, скорее всего, транзисторов с таким обозначений в природе не существует, за то на вторую марку транзисторов даташит обнаружился тут. Сейчас фирма RM применяет неизвестные транзисторы, промаркированные на заводе, как MOS RM3. Это полевые транзисторы с изолированным затвором имеют хорошие параметры по усилению и стабильности работы. Вполне вероятно, что это те же 2SС1307. Что бы обеспечить высокую выходную мощность – в каждом плече усилительного каскада их установлено по 2 штуки в параллель. Но, как показывает опыт использования данных усилителей, транзисторы эти весьма нежные и боятся больших рассогласований. Поэтому, при использовании усилителей подобного типа обязательно нужно позаботиться о хорошем согласовании антенны с усилителем. Совместно с усилителем стоить применять только хорошо настроенные диапазонные антенны, либо ставить ФНЧ после усилителя и применять ручной или автоматический тюнер.

Применяемая в тюнере схема построения усилителей имеет хорошие характеристики по линейности, а 2-хтакная схемотехника позволяет эффективно подавить чётные гармоники. Так же, 2-хтактная схемотехника построения усилителей имеет широкополосный вход и выход, что очень подходит для КВ усилителей. В большей степени параметр широкополосности зависит от конструктивных особенностей входного и выходного трансформатора. В конструктиве усилителя KL-203 всё сильно упрощено, потому максимальное усиление он имеет не во всей полосе частот КВ диапазона, а ограничен сверху частотой 30МГц и 15-20МГц снизу.

Таблица выходной мощности усилителя, тока и КСВ в зависимости от входной мощности.

Частота (МГц) Рвх (Вт) Рвых (Вт) Ток (А) КСВ
29 10 90 6.8 1.2
27 10 100 7.2 1.1
27 5 50 4 1.1
24 10 95 7 1.2
18 10 90 7 1.3
14 10 105 7.2 1.7
10 10 110 7.3 2.5
7 10 90 6.5 Больше 5

Вид усилителя изнутри

Краткие характеристики и особенности:

  • Входная мощность — 1-10 Ватт
  • Выходная мощность — 20-200 Ватт
  • Напряжение питания — 12-14 Вольт
  • Потребляемый ток — 10-20 Ампер
  • Предварительный усилитель по приёму (для версии Р)
  • 2 режима выходной мощности

Эти два усилителя, так же как и предыдущие отличаются только наличием встроенного предварительного усилителя, описанного выше. Усилитель так же выполнен по 2-хтактной схеме, но в каскаде усиления применены уже не полевые MOS транзисторы, а биполярные и гораздо большей мощности. Соответственно их усиление гораздо выше. Это хорошо известные транзисторы SD1446 фирмы SGS-THOMSON Microelectronics GROUP. Даташиты на них можно посмотреть тут. Они специально разработаны для применения в оконечных каскадах усилителей. Имеют хороший КПД, и более устойчивы в работе при сильном рассогласовании и высоком КСВ антенны.

При вскрытии усилителя выяснилось, что в усилителях последних партий стоят не SD1446, хотя всего год-полтора назад стояли именно они. В новом усилителе стоят транзисторы MS1051. Вот тут лежит даташит на них. Это транзисторы концерна Advanced Power Technology. Если сравнить этот транзистор с SD1446, то можно заметить что по характеристикам транзистор MS1051 немного лучше. Усиление у MS1051 больше, мощность отдачи у них выше раза в полтора, а соответственно и общее КПД усилителя будет выше.

Основа схемы усилителя мощности.

В усилителе применена самая простая схема мостового усилителя на биполярных транзисторах, простейшая RC-цепочка отрицательно обратной связи для выравнивания усиления по частоте, простейшая цепь автоматического смещения. Транзисторы работают в режиме «С». Т.е используется самая простая схема с минимум деталей, из-за чего и стоимость усилителя самая минимально возможная.

Эта статья научит вас зарабатывать:  Гид по бинарным опционам, который расскажет всё о трейдинге

Как и в случае усилителя на полевых транзисторах, в усилителе на биполярных транзисторах широкополосность определяется конструкцией входных и выходных трансформаторов. От конструкции входного трансформатора так же зависит КСВ по входу усилителя. В таблице, представленной ниже приведены замеры выходной мощности в зависимости от входной, а так же КСВ по входу.

Таблица выходной мощности усилителя

F MHz Pwr 5W Hi (SWR) Pwr 5W Low (SWR) Pwr 2.5W Pwr 1W
1
2 200 100
3 Вх 3,5 Вых >200 (>5)* >200 (1,5) 195 60
4 Вх 3,5 Вых >200 (>5)* 180 (1,4) 190 50
5 Вх 3,5 Вых >200 (>5)* 150 (1,4)
6 Вх 3,5 Вых 190 (>5)* 150 (1,4)
7 Вх 3,5 Вых >200 (>5)* 140 (1,5) 170 75
8 Вх 3 Вых 160 (>5)* 125 (1,4)
9 Вх 3,5 Вых 170 (>5)* 140 (1,55)
10 Вх 3 Вых 160 (>5)* 130 (1,6) 165 40
11 Вх 3 Вых 160 (>5)* 120 (1,6)
12 Вх 3 Вых 150 (>5)* 110 (1,6)
13 Вх 2,5 Вых 130 (>5)* 110 (1,5)
14 Вх 3 Вых 150 (>5)* 100 (1,5) 120 23
15 135 (3) 90 (1,4)
16 125 (3) 80 (1,35)
17 115 (2,2) 70 (1,25)
18 120 (2) 65 (1,22) 90 30
19 115 (1,8) 65 (1,2)
20 115 (1,65) 65 (1,2)
21 115 (1,6) 67 (1,1) 85 33
22 117 (1,5) 68 (1,05)
23 120 (1,3) 70 (1,02)
24 120 (1,3) 70 (1,02) 80 30
25 120 (1,25) 70 (1,05)
26 120 (1,2) 70 (1,1)
27 120 (1,3) 65 (1,25) 63 25
28 115 (1,4) 60 (1,3) 56 21
29 102 (1,6) 51 (1,4) 50 18
30 84 (1,8) 42 (1,6)
* — применён автотюнер в трансивере и снижена входная мощность

Вид усилителя изнутри

Краткие характеристики и особенность:

  • Входная мощность — 1-10 Ватт
  • Выходная мощность — 60-300 Ватт
  • Напряжение питания — 12-14 Вольт
  • Потребляемый ток — 10-35 Ампер
  • Режимы работы — AM/FM, SSB, CW
  • Предварительный усилитель по приёму
  • 3 режима выходной мощности
  • Индикация выходной мощности
  • Вход внешнего управления режимом RX/TX
  • Вход удаленного управления усилителем

Это усилитель по схемотехники построения отличается от усилителя KL-500 введением дополнительного сервиса по управлению и отображению параметров. В отличии от описанных выше усилителей, на передней панели этого усилителя, на светодиодной шкале отображается уровень выходной мощности. И главным отличием этого усилителя является возможность дистанционно по кабелю управлять такими параметрами как уровень выходной мощности, включение/выключение предусилителя по приёму. Переключение режима работы АМ/FM или SSB/CW и уровень выходной мощности.

Отличительной особенностью усилителей серии KL-XXX, является отсутствие фильтров низких частот. Если 2-хтактное включение транзисторов в усилителе ещё позволяет эффективно подавить все чётные гармоники за счёт правильного выполнения симметриирующих трансформаторов, то нечётные гармоники в двухтактных усилителях не подавлены вовсе. Величина нечётных гармоник зависит от режима работы усилительных каскадов. Для режима FM обычно основной упор делается на большое усиление сигнала при очень высоком КПД усилителя в целом, которое может достигать 85%. Линейность работы каскадов в этом случае неважна. Соответственно уровни нечетных гармоник в таком режиме усиления максимальны и могут достигать -16дБ (3-я гармоника) от уровня основного сигнала. В режиме усиления AM и SSB сигналов важно сохранить верность передачи голоса оператора. Потому параметр линейности в таких усилителях должен выдерживаться достаточно жестко. При этом КПД работы идеального AM/SSB усилителя падает до 30%. На практике стараются найти компромиссные режимы, сохраняя достаточно высоким значение КПД, при допустимом уровне нелинейных искажений и соответственно гармоник.

Из рассматриваемых выше усилителей, только в схемотехнике усилителя KL-300 отсутствует смещение транзисторов, которое определяет линейность. Потому усилительный каскад работает в режиме «С» с максимальным КПД, но имеет очень большой уровнем гармоник. Режим SSB в нем присутствует номинально, и применять этот усилитель для постоянной работы на КВ без внутренних переделок вряд ли стоит. Этот усилитель очень хорошо подойдёт для работы в автомобиле на Си-Би в режиме ФМ. Творческие люди любящие конструировать, могут взять этот усилитель за основу в своих конструкциях, при том, что он имеет самое лучшее соотношение цена/мощность!

Гораздо удачнее выполнены усилители KL-400/500/501. В них уже реализованы компромиссные решения для того что бы обеспечить высокое КПД работы усилителя в режиме FM, так и соблюдены требования линейности для работы в режиме АМ и SSB, но, к сожалению, при этом уровень нечётных гармоник остаётся достаточно высок. Для того чтобы не создавать постоянно помех пользователям другой аппаратуры использовать эти усилители желательно в машине, а если вы захотите применять эти усилители в стационарном варианте, то обязательно совместно с усилителем нужно применять внешний фильтр нижних частот. Для того что бы максимально снизить стоимость усилителей – пришлось отказаться от этих фильтров.

Часть 2. Дорого, но качественно!

В свете описанной выше ситуации с отсутствием диапазонных фильтров низких частот, мы можем сделать выводы, что усилители серии KL подходят для установки в автомобиль или фуру. Для использования усилителей KL в стационарном варианте нужно использовать внешние диапазонные фильтры нижних частот. Или же, потратить больше денег и приобрести более дорогой усилители мощности с уже установленными фильтрами. Фирма RM для этого случая предлагает усилители серии HLA. Усилители серии HLA имеют улучшенный сервис в плане управления, а именно – имеют полную автоматизацию переключения по диапазонам, автоматизацию переключения режима работы приём/передача, имеют защиту от перегрева и защиту от превышения КСВ. Дополнительно представлены 2 версии усилителей с уже установленными вентиляторами для принудительной продувки в случае перегрева. Модельный ряд представлен 2я усилителями мощностью 150 и 300 Ватт, с 2я модификациями по обдуву радиаторов:

  • RM HLA – 150 Plus
  • RM HLA – 150 V Plus ( версия с вентилятором)
  • RM HLA – 300 Plus
  • RM HLA – 300 V Plus ( версия с вентилятором)
  • RM HLA-150 Plus и RM HLA-150 V Plus

Краткие характеристики и особенность:

  • Входная мощность — 12 Ватт (14 макс)
  • Выходная мощность — 300 Ватт
  • Напряжение питания — 220 Вольт
  • Режимы работы — AM/FM, SSB, CW
  • Диапазон рабочих частот — 1,5-30 МГц
  • Входное КСВ
Эти брокеры дают бонусы за открытие счета:
Понравилась статья? Поделиться с друзьями:
Бинарные опционы: прибыльные индикаторы, сигналы и системы
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: